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INTRODUCTION

The hypergolic N204/Amine earth-storable propellant combinations are the

prime candidates for the Space Shuttle orbital maneuvering engine (OME).

When these propellants are employed with injectors which utilize unlike

jet impingement to mix and atomize the propellants, performance losses

are sometimes encountered from a phenomenon called reactive stream separa-

tion or "blowapart". This phenomenon can occur either as a steady turning

of the incoming liquid jets away from their normal impingement point (a

process which will be denoted as RSS) or as a series of small explosions

near the impingement point (usually called popping). In addition to

reducing combustion efficiency, popping is also considered to be one of

the triggering mechanisms for acoustic mode combustion instability. Be-

cause of the high performance and reliability required of Space Shuttle

engines, it is imperative that blowapart phenomena be understood and

their undesirable effects be minimized.

The injector design problems associated with blowapart have been recognized

and studied for over 15 years. In 1959, Elverum and Staudhammer (Ref. 1)

showed with photographic studies of single element injector firings that

low values of c* measured with the N204/N2H4 combination resulted from

extremely rapid reaction which separated the fuel and oxidizer streams

before mixing was complete. In 1960, Somogyi and Feiler attributed limits

in measured heat release rates for rapidly contacted HNO3/N2H4 and

HNO3/UDMH to gas evolution which prevented complete liquid mixing. Since

that time, numerous investigations have been made in order to identify the

thrust chamber operating conditions under which RSS and popping occur and

to formulate physical models for these phenomena in terms of controllable

design parameters. Over this same period, additional studies have been

made of the reaction chemistry of the N204/Amine and HNO 3/Amine systems.

Although the considerable information which has been accumulated concerning

the physical and chemical processes associated with.RSS and popping has so

far resulted in models which give satisfactory correlation of only selected

sets of the available experimental data, a survey of this information provides
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the background both for further experimental studies and for formulation

of more advanced theoretical models of the complicated blowapart mechanisms.

The following sections of this report present a review of (1) theoretical

models of RSS and popping, (2) experimental combustion data under simulated

rocket conditions, and (3) N204/Amine combustion chemistry data, all gathered

in a literature survey prior to the start of Rocketdyne's current investiga-

tion of fundamental blowapart mechanisms under contract NAS9-14126.

REVIEW OF THEORETICAL MODELS

STEADY REACTIVE STREAM SEPARATION (RSS)

Perhaps the first theoretical prediction of the conditions under which im-

pinging hypergolic fuel and oxidizer streams might be expected to separate

was made by Beltran (Ref. 3). His approach was to compare the pressure

force imposed by the transverse momentum of the impinging propellant jets

to the pressure of the product vapors generated by chemical reaction at the

interface between the respective fuel and oxidizer sheets formed at the jet

impingement point. Using the Clapyron Equation to define the product gas

pressure, Beltran derived the following criterion for the case of the equal

diameter unlike doublet. Separation occurs when

(AHR - AHL) - AHv nRT2  4wV (sin) 2

Cp AHP 2

However, it appears' from the discussion in Ref. 3 that Eq. (1) can only be

used when the effective heat of reaction (AHR - AHL), equal to the difference

between the thermodynamic heat of reaction and the heat lost to the unreacted

liquid propellants, can be estimated reasonably accurately. Otherwise, Eq. (1)

can be used only as a scaling factor to determine the effects of propellant

combination, chamber pressure, orifice diameter, injection velocity, impinge-

ment angle, and (possibly) injection temperature. However, because (AHR - AHL)

*All symbols are defined in the nomenclature section.
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is a function of the impingement point mixing process, and therefore of

orifice diameter, injection velocity, and mixture ratio, the use of Eq. (1)

as even a scaling parameter is limited.

Kushida and Houseman (Ref. 4) developed an analytical model for RSS which

treats the steady process as occurring by either of two mechanisms, dis-

tinguished by whether the chemical reaction(s) responsible for separation

occurs primarily at a liquid/liquid interface or in a thin stable interface

gas film of thickness 6. Mean pressure and temperatures are defined by heat

and mass transfer together with the Ap between film and chamber pressures

required to expel the gaseous reaction products from the -interface film.

Consider the unlike doublet geometry shown in Fig. 1. Kushida contends that

there is a control volume of mixed propellants which starts at the impinge-

ment point and extends downstream for a distance that depends on element geo-

metric and hydraulic factors. This volume is considered to be the "reactor"

volume of propellants. If the average residence time of the propellants in

the reactor volume is sufficient that the temperature of the propellants is

raised to the bubble point due to heat transfer, then separation will result.

This is characterized by equating the average fluid particle residence time

to a bubble point heat transfer control time

dj Cp (T - Tinj)

V tr = f,ox
SQ -(2)

FUEL

-* ,. SHEET LENGTH

BACKFLOW

LIGAMENT
FORMATION

lMIXING . -- ZONE
e . i LENGTH I

OXIDIZER II

Figure 1. Schematic of Unlike Impinging Doublet
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where

tr = residence time

d. = jet diameter

Vj = injection velocity

tb = time to reach the bubble point temperature

Tb = bubble point temperature

Tinj = injection temperature

C = liquid specific heat, Btu/moleo

Q = liquid phase heat generation rate (Btu/mole sec)

The principal difficulty encountered in the use of Eq. (2) is the definition

of Q, the liquid phase reactive heating rate. Kushida used the experimental

data of Somogyi and Feiler (Ref. 2) for "fully mixed" HNO3/N2H4 in his cal-
culations as an estimate of the rate for the N204/N2H4 combination. Although

Lawyer and Tkachenko (Ref. 5) later measured equivalent heat generation rates

for the N204/N2H4 using a contained flow cup mixing apparatus similar to that

used in Ref. 2, Rodriguez (Ref. 6) measured significantly lower values of Q
in a free jet mixing apparatus which more closely simulated real rocket engine

injector elements. From these data, it appears that the liquid reaction rate

is very sensitive to the impingement point mixing; therefore this mixing must

be incorporated into the model as a function of injector element configuration

and operating conditions. Both the Beltran and Kushida-Houseman models, as

represented in Eqs. (1) and (2) consequently suffer from the lack of a systematic

method of defining the heat release rate at the impingement point for useful

element configurations.

It should also be noted that the liquid separation criteria of Eq. (2) has

never been experimentally observed, and in private communications with

Dr. Kushida he has suggested that this portion of the model may be unreal.

Quite possibly, if sufficient time is available for liquid-phase separation,

then cyclic blowapart might occur.

*The apparatus of Refs. 5 and 2 used normally-impinging fuel and oxidizer
jets discharging into a cylindrical cup with a diameter of only .313 inch.
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For the gas-phase separation, the Kushida and Houseman model assumes that

if sufficient heat is transferred to the approaching jets to generate

oxidizer and fuel vapors, then the vapors wil--react and form a gas barrier

between the jets. This gas pocket can, under some conditions, substan-

tially dissipate the momentum of the approaching jets, thereby preventing

their mixing. The gas-phase separation criterion for NTO/N 2H4 , as derived

in Ref. 4 is:

d. .5
Separation occurs when: >- >35 10- , in psec (3)

Prediction of RSS (gas phase) using the above criterion is shown in Fig. 2.

ROCKETDYNE (SEPARATE)
REFERENCE 9

SEPARATION

DYNAMIC SCIENCES
-- (MIXING) REFERENCE 8

C-

LS10'- O 0 0 0
I MIXING 0 0 MIX

JPL
-- " SEPARATE

10 10 0 10 2 10
d./V - CONTACT ME, MILLISEQDS

J j M-DYNAMIC SCIENCES
(MIXING) REFERENCE 7

Figure 2. Comparison of Model Predictions of RSS with
Experimental Data (Ref. 4)

Experimental data from several sources are included on the figure. These

data suggest that the model formulation is too simplified to adequately

account for RSS. This contention is suggested first from consideration of

the results from Ref. 7 which show that the model would predict that liquid
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phase separation should occur at atmospheric pressure while experimental

data reveals that mixing of the propellant streams was accomplished. In

addition, data from Ref. 8 reveals that mixing-actually occurs in both the

liquid- and gas-phase separation zone.

In addition to the above study, Houseman at JPL has studied the RSS phenomena

in a combusting rocket engine using a water-cooled probe attached to an on-

line mass spectrometer. His rather perplexing results are shown in Fig. 3.

His data show that the jets become mixed as the contact time is increased,

which is completely contrary to the above model, or for that matter, other

models. At this time there appears to be no rational explanation for these

results; however, there is sufficient belief in the validity of the experi-

mental approach used by Houseman that these results should be considered in

any eventual model formulation. (As a minimum, the experimental conditions

should be duplicated in verification tests using photographic techniques

instead of the probe.)

I I I I I I

ORIFICE SIZE: 0.020 INCH DIAMETER
400- 100 FT/SECVPROPELLANT TEMPERATURE: 40 F

0 SEPARATED
1 MIXED

200 - 0 PENETRATED

) 14 F, MIXED

< I00- Ink
C80 / C3 V

6 6

40 - OPTIMUM
0 \ MIXING LINE

20-

20-- - __ AMBIENT PRESSURE

10 20 40 60 100 200 400 600 1000
CONTACT TIME, MILLISECONDS

Figure 3. Separation Ranges from N204/N2H4 as Determined
in Ref. 10
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Lawver (Ref. 11) developed a model for steady RSS by defining an ignition

delay time, Tign, as the time required for the reaction between mixed liquid

propellants downstream of an element impingement point to proceed to a stage

where the resultant gas evolution is sufficient to separate the liquid phases.

Similarly, a mixing delay time,-mix, is defined as the average time required

for the liquid propellants to pass from their point of initial jet impingement

to the downstream plane at which a satisfactory liquid phase mixing has been

accomplished. The criterion for steady RSS then becomes:

Separation occurs when:

Tign - mix (4)

If Eq. (4) is to be used for injector design, both Tign and Tmix must be

defined in terms of such controllable parameters as orifice diameter, in-

jection velocity, chamber pressure, propellant temperature, etc., which have

been experimentally shown to influence separation. To define rign' Lawyer

assumes that a first order reaction rate formulation can be applied to the

liquid phase reaction

r dC - ACeE/RT (5)dt

Then the ignition delay can be defined as

ln (Cin /C )
=ogn 0

ign Ae-E/RT (6)

Since Cig n , A and E are all unknown, the first order reaction model serves

only to define

rign YeB/T (7)

The mixing time delay of the propellants is defined by Lawyer as

mix = Lmix/V (8)
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where the mixing length is equal to

Lmix = X(dj) (9)

and X is a constant depending only on the impingement angle. (This type

of assumption seems questionable because it requires the mixing length to

be dependent only on jet size and be insensitive to the relative momenta of

the jets or to their overall momentum level. Unpublished Rocketdyne cold

flow studies made in conjunction with the program reported in Ref. 12 indi-

cate that the total sheet length-- and therefore most probably the mixing

length-- for small like-doublets is inversely related to the jet velocity.)

Combining Eqs. (4) and (7) and then substituting for Lmix from Eq. (9) gives

Lawver's criterion for the transition between jet mixing and separation.

Y E/RT  Y B/T d j
X X Vj (10)

Taking logarithms of both sides of Eq. (1) gives

ln () + = In (11)

By plotting ln(d /V) versus Tinj for a series of single unlike doublet

tests at one atmosphere and a single nominal mixture ratio of 1.2 and draw-

ing the boundary between the mixing and separated regions, Lawyer determined

values of kinetic rate constants E and K for the N204/N2H4 propellant combina-

tion. With these constants defined, Lawyer's model provides a method of

estimating the effects of propellant injection temperature and of residence

time (d /V ) on steady RSS phenomena for otherwise-fixed operating conditions.

However, the apparent generality of the model may be deceiving. For example,

inspection of the above expression seems to suggest that separation should be

insensitive to pressure since E is a weak function of pressure. This of course

is inconsistent with the model of Kushida and Houseman and the results of

Ref. 8 and 10. Similarly, the model gives no clue as to the effects of mix-

ture ratio or orifice diameter ratio. From these considerations, it would
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appear that the RSS model proposed by Lawyer is inadequate as a 
general

index for reactive stream impingement. However, with a single change in

the starting assumptions, it may be possible to develop a similar ignition

delay model which is anticipated to provide a more general description of

the steady RSS regime. Such a model will be proposed in a later report.

POPPING

Lawyer (Ref. 11) extended his ignition delay model for steady RSS to a

description of popping by noting (from high speed motion pictures) that

pops seemed to originate as random explosions of mixed incompletely-

atomized propellants downstream of the impingement point. The main feature

of this model is that popping will be initiated if the ignition time is

greater than the mixing time but less than the ligament zone residence time.

The ligament zone residence time, determined experimentally from water/freon

cold flows with jets of equivalent diameter, is (Ref. 7)

lig = 200 d /V 2 (12)

This equation and Eq. (7) and (8) form the basis for limits on popping.

Just considering the popping of a single element,the above expression

introduces no new aspect of combustion or a mechanism that would trigger

a detonation. This criteria simply states that an explosion will be

initiated when:

mix < "ign -' lig (13)

or

Xd. d
d <YeE/RT < 200 d

- V 2  (14)

Here again, this equation does not include the effect of pressure on the

explosion limits for a single element. Therefore, this limit contradicts

all known popping data where pressure was extensively varied (Ref. 8 and 10).

In addition, the relationship suggests that the critical popping contact time
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y E/RTdj/V = e Vj (15)
3 j 200

is constant (for a fixed temperature) multiplied by the velocity and is,

therefore, directly dependent on velocity. This result is also not in

agreement with that of Ref. 10.

To complement the popping initiation model defined by Eq. (14), Lawyer also

introduced a trigger coupling model (Ref. 11) to characterize the strength

of a popping disturbance and therefore of the tendency of the initial dis-

turbance to grow into a detonation which can propagate to adjacent elemental

spray fans. The trigger coupling model is based on the initial disturbance

generating a shock wave which grows into a detonation as it passes through a

burning spray. The tendency to detonation is characterized by a detonation

-parameter .9 defined as

(.4a) 2/
3 (E)1/3

SS P (16)

with

4 3
S: . inH R Jpp rf (17)

and by an impingement parameter I defined as

I = ign sep arate
i gn operate

I = expf Iln (d/Vj siny) + 46.8 - 21,800 (18)

While the trigger coupling model has certain attractive features, it is

nevertheless suspect. This is due to the experimental results presented

in Ref. 13, which have clearly demonstrated that the initiation of the

disturbance is just slightly downstream of the impingement point and is

itself an explosion (determined from measurement of pressure and velocity)

which completely consumes the spray that emanated from that element. This

would suggest that for practical injector designs, the "disturbance" will
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always be of high enough amplitude to couple with adjacent elements

regardless of spacing. That is, once the detonation wave consumes the

spray of its parent element, it will spread to the adjoining elements

simply because the sprays are sufficiently distributed across the com-

bustion chamber some distance downstream of the injector and the sprays

contain unreacted mass. The popping coupling model as "verified" by

Lawyer is presented in Fig. 4.

Note that these data were obtained at essentially constant chamber

pressure. In addition, inspection of the data reveal that about an

equal number of data points fall within the shaded area as are outside.

This would appear to be an inadequate proof of the model.

In summary, although there are features contained in all of the above

models that are valid, it is obvious that they all lack essential features

which are necessary for an adequate description of reactive stream separa-

tion and cyclic blowapart. The essential feature would appear to be the

description of the mechanisms controlling these phenomena. Once they are

defined, then it would be a rather straightforward process to develop models

that can be used to describe and predict blowapart characteristics.

4.0 I I II oNO POPS
POP ZONE I POPS

II
S3.0 MIX m soI

0
1 o SEPARATE

2.0- o oo

< .- oocooo ocz o

0.0
0.001 0.01 0.1 1.0 10.0

IMPINGEMENT PARAMETER

Figure 4. Impingement Detonation Correlation (Ref. 11)
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IMPINGING JET STABILITY

Whereas the theoretical models of Beltran, Kushida-Houseman and Lawyer dis-

cussed above were primarily concerned with describing the effects of injection

temperature, chamber pressure, and of combinatTons of orifice diameter and

injection velocity, a theory of impingement dynamics proposed by Rupe,

Dipprey, et al (Ref. 14), provides at least a partial explanation for the

experimentally-observed sensitivity of blowapart to cold flow mixing effi-

ciency. Cold flow mixing efficiency (defined either as EM or nmix ) maximizes

when the centerline momentum ratio defined as

MomentumF PF VF2dF
Momentum ox

ox p V dox ox ox

is equal to unity. Rupe and Dipprey show this condition is also intrinsically

unstable for equal jet diameters in which case the stagnation pressures of
the jets are equal. At this condition, substantial changes in effluent mixture

ratio and jet direction downstream of the impingement point for infinitesimal

changes in stagnation pressure ratio can occur.

Fig. 5, taken from Ref. 14, is a schematic representation of three possible

cases for the impingement of two jets. At equal stagnation pressures (the
middle case), there is a common stagnation point for both streams together with
a back flow which contains fluid from each incoming stream. When (as shown in
the two outer cases) the stagnation pressures of the stream are not equal, only
the lower pressure stream is stagnated, and only fluid from this stream appears
in the back flow which is directed toward the high pressure stream. Because
the change in stagnation and back flow with pressure ratio is very abrupt, the

GENERAL CONFIGURATION - NONIDENTICAL JETS

SIAGNATION "NY

PA 
< 

I's FA PS FA > Ps

Figure 5. Several Topologies for the Flow Field of a
Pair of Impinging Jets (Fig. 2 of Ref. 14)
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impingement zone and spray fan mixture ratio is correspondingly 
sensitive

to small changes in the incoming streams. Although the physical arguments

of Ref. 14 are documented with simplified theoretical calculations, the

accompanying experimental evidence is inconclusive because it was obtained

with equal jet diameters such that an equal dynamic pressure condition

corresponded to equal jet momenta. The latter condition was shown to

represent optimized mixing in the study of Ref. 17. The importance of

the physical processes at this common (for equal diameter jets) equilibrium

point are shown in Fig. 6 which was also taken from Ref. 14. Popping is

seen to maximize at equilibrium. No mechanism is proposed by Rupe and

Dipping. If dynamic pressure ratio governs, it is possible that the

presence of small amounts of both hypergolic propellants in a stagnation

condition, i.e., for residence times much longer than the average time

defined by d /Vj, could lead to a heating of these propellants to the point

where an Arrhenius type of temperature effect would produce either separation

or detonation. If centerline jet momenta (i.e., mixing) governs, then

popping intensity is simply related to mixing intensity.

S0 / ' POPPING THRESHOLD

f -30 POPS/SEC

oo
80

70

0 0 0 -45 POPS/SEC

0 O
60 O O 0 AND To WITHIN 10oF

o0 0 %  OO o o o

O SMOOTH 0 0

0 MARGINALLY SMOOTH

SROUGH O

30 ( SPONTANEOUSLY RESONANT I

OXIDIZER JET STAGNATED- - FUEL JET STAGNATED

0.10 0.20 0 .40 0. 0 0.60 0.70 0.80 0.90 1.00

I * (P/Po)

Figure 6. Correlation for the Incidence of Popping
with Stagnation Pressure Ratio in a Liquid
Propellant Rocket Engine (Fig. 9 of Ref. 14)
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REVIEW OF EXPERIMENTAL DATA

A variety of experimental techniques have been employed to investigate

reactive stream separation under rocket engine conditions. These methods

include:

1) Photography of the spray field for single element injectors either

under open air combustion conditions or in small transparent combustors

at elevated pressures.

2) Performance evaluation of both single- and multi-element injectors

under hot fire conditions and comparison to the results of equivalent

cold flow mixing and atomization experiments.

3) Localized gas sampling across the combustion gas flow field downstream

of single element injectors.

4) Measurement of pressure oscillations near subscale (particularly single

element) injectors.

In addition, other investigations have been made of the liquid phase (or

liquid interface) chemical reactions which occur when two hypergolic propel-

lants are brought together. The purpose of these latter experiments has been

to establish the heat generation rates, initial reaction products, and other

fundamental kinetic data which, together with fundamental fluid dynamic data,

are necessary to formulate reasonable theoretical models.

MODEL ROCKET ENGINE DATA

The results of experiments under simulated rocket engine conditions have demon-

strated that the following parameters can influence blowapart for injectors

using unlike-impinging elements:

1) Propellant combination

2) Relative jet momenta

3) Contact time

4) Pressure

5) Orifice size

6) Propellant temperature
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While a considerable amount of data exists, only selected representative

studies are discussed.

Propellant Combination

To assess the potential effect of propellant combinations of N204 with amine

fuels, the reactivity of N204/N2H4 , N204/MMH and N204/UDMH were studied by

Rodriguez and Axworthy (Ref. 6). In these experiments, the heat release

rates were measured using impinging unlike-doublet jets where the reaction was

quenched immediately downstream of impingement. The results were somewhat sur-

prising in that they suggested that the propellant combinations, in order of

decreasing chemical reactivity, were (1) N204/UDMH, (2) N204/MMH, and

(3) N204/N2H4 . The authors state that machine-gun-like sounds were heard

emanating from the impingement region of the N204/N2H4 propellants and visible

light was observed near the reaction zone for the N204/MMH propellants. Neither

sound nor light were observed for the N204/UDMH propellants. This suggested

that the order of the actual propellant reaction rates could have been altered

due to popping (which has been related to sound and light emanating from the re-

gion of jet impingement in other, more definitive tests, Ref. 13). If this

were the case, then the order of reactivity would be (1) N204/N2H4,
(2) N204/MMH, and (3) N204/UDMH. To illustrate the difficulty of designing

definitive experiments, this possible interpretation can be carried one step

further. If all three propellants produce reactive nitrate intermediates, then

the measurements could be interpreted as: the lower the reactivity, the greater

the amount of propellant that will be mixed before ignition is initiated and

the greater will be the heat released to a quenching fluid. Consequently,

N204/N2H4 would result in the smallest quantity of mixed propellants while

N204/UDMH would have the largest quantity. Tests conducted at the Bureau of

Mines (Ref. 15) have shown that the order of explosion sensitivity for these

propellants are (1) N204/N2H4 , (2) N204/MMH, and (3) N204/UDMH. This order

is consistent with the audible sound and visible light observations discussed

above.

Nurick and Cordill (Ref. 13) have studied the popping and RSS characteristics

of N204/N2H4, N204/A-50, RFNA/UDMH and ClF 5/N2H4 at equivalent flow conditions.

The results showed that cyclic blowapart occurred for N204/N2H4, N204/A-50 and

RFNA/UDMH while RSS occurred with ClF 5/N2H4. Typical photographic sequences

depicting the flow characteristics for several of the propellant combinations
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studied are presented in Fig. 7, 8, and 9. For the propellants that

experienced popping, the magnitude of the disturbances differed con-

siderably and were ranked in descending order.nf detonation level as

class A, B, and C, where:

Class A (strong blowapart) results in complete destruction of

the spray fan and the impinging jets.

Class B (weak blowapart) results in only a partial destruction

of the spray fan.

Class C (puffs) are small local explosions with little fan

disturbance.

Based on this somewhat arbitrary definition, the various propellant combina-

tions were ranked as (1) N204/N2H4 (only class A detonations), N204/A-50

mostly B and C), and (3) RFNA/UDMH (primarily class C disturbances). Lastly,

Houseman (Ref. 16) conducted some popping experiments with N204/MMH as well

as with N204/N2H4. He found that the popping characteristics of N204/MMH are

very similar to N204/N2H4, suggesting that the final order would be

(1) N204/N2H4 , (2) N204/MMH, (3) N204/A-50, and (4) RFNA/UDMH.

Relative Jet Momenta

Experimental cold-flow and hot-fire studies (Ref. 17) have shown that as the

relative jet momenta (and consequently their dynamic pressure ratio) are

varied, c* performance changes in the manner shown in Fig. 10.

The data in Fig. 10 indicate that an improvement in cold flow mixing uniformity

increases the tendency for blowapart as evidenced by lowered c* performance.

In fact, the minimum performance occurs where the non-reactive mixing effi-

ciency maximizes. These results suggest that the degree of blowapart is

dependent on the quality of mixing. Similar results are shown for a multi-

element, unlike-doublet injector (Ref.13) in Fig. 11.
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TIME = 0 MSEC (EDGE VIEW OF
I. '13. SPRAY FAN)

e' P 13.7 PSIA
L

VT = 40 F

T 50 F

pV

TIME = 3.8 MILLISECONDS

S(STREAM BLOWN APART)

OXIDIZER

FUEL

TIME = 7.1 MILLISECONDS
(STREAM REATTACHING)

Figure 7. Typical Sequence Showing Cyclic Behavior of NTO/50-50 (Class A

Blowapart) Reactive Stream Blowapart with 0.173-inch (60-degree

Impingement Angle) Diameter Unlike Stream Orifice Pair Element
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FUEL

(a) TIME = 0 MILLISECOND
(EDGE VIEW OF FORMATION
OF SPRAY FAN)

' OXIDIZER

Pc = 13.7 PSIA

T = 50 F

Tf = 40 F

- = 0.85

(b) TIME = 0.19 MILLISECOND
(DISTURBANCE OCCURS)

(c) TIME = 0.37 MILLISECOND
(STREAMS BLOWN APART)

Figure 8. Typical Sequence Showing Cyclic Behavior of NTO/Hydrazine Reactive
Stream Blowapart with 0.072-Inch-Diameter (60-Degree Impingement

Angle) Unlike Impinging Stream Orifice Pair Element, Edge View of
Spray Fan from Injector Face to 4 Inches Downstream
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(d) TIME = 0.73 MILLISECOND
(SPRAY IS CONSUMED)

(e) TIME = 2.0 MILLISECONDS
(RE-FORMATION OF SPRAY FAN)

4C , (f) TIME = 3.4 MILLISECONDS

Figure 8. (Concluded)
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Figure 11. Effect of Mixing Uniformity on Blowapart (Ref. 13)
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Note that similar results were observed for the full-scale injector as

were observed with the single element. However, due to a lack of adjacent

elements in the single-element configuration, inter-element mixing is

minimized and, consequently, the loss in c* performance is considerably

greater. It should be pointed out that the propellant combination for

both of these studies was N204/A-50. The interpretations of these results

are supported by the results obtained using ClF 5/N2H4 (see Fig. 9) wherein

steady-state separation occurred until the mixing uniformity index (EM) was

changed from 0.5 (EM = 1/1+4) to 0.38.

Clayton (Ref. 18) studied the effects of jet momenta on popping for N204/A-50

propellants and found that the maximum pop rate occurred at equal oxidizer-to-

fuel stagnation pressure which for equal jet sizes also corresponds to the Rupe

optimum mixing criteria condition. These results would tend to support the

findings of Nurick and Cordill (Fig. 11) where hot-fire test data suggest that

maximum disturbances occur when the mixing is optimum.

Contact Time

Contact time is defined as the time required for a "packet" of mixed propellants

to travel from the point of initial contact between the oxidizer and fuel jets

(i.e., the impingement point) to a position one orifice diameter downstream

(Eq. 2). The appropriateness of this definition relies on geometric similarity

of the mixing distance as defined by the orifice diameter as well as a physical

relationship to blowapart. Kushida's definition (Ref. 4) suggests that the

transverse mixing is linearly dependent on jet diameter resulting in equal

reactor volumes when the contact times defined by d /Vj are equal. Several

experimental studies have been conducted over limited ranges in contact time

(Ref. 7, 19, 16, 10, and 11) and have clearly illustrated that d /Vj has a

strong influence on RSS. Cyclic blowapart has also been shown to be affected

by contact time. One of the more detailed studies on popping illustrating the

influence of d /Vj on pop rate is that conducted by Houseman (Ref. 19) using

N204/N2H4 propellants. A summary of his results is provided in Fig. 12. Note

that for these results the pop rate increases with increasing contact time.
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Figure 12. Effect of Contact Time on Pop Rate (Ref.19)
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Pressure

The results of Houseman (Ref.- 10) discussed above (see Fig. 3) illustrate

that the chamber pressure, independent of any-other parameter, also has a

strong effect on RSS. His results show that for a fixed value of contact

time of 100 Psec (d /V ), chamber pressures above approximately 60 psia

will tend to produce reactive stream separation. These results are in-

directly supported by hot fire data obtained in Ref. 17 using N204/A-50

propellants as well as the current Rocketdyne OME study (Ref. 20) using

N204/MMH propellants. Using a single-element unlike-doublet and throttling

up in chamber pressure produced the c* performance characteristics shown as

the solid curve in Fig. 13.

The dashed line in the figure represents the results obtained with a self-

atomizing fan injector element (this element is not ordinarily subject to

blowapart) during the same program. Note that for the unlike doublet, c*

performance initially increased, reached a maximum, then decreased rapidly

to a minimum. The self-atomizing fan performance characteristics, however,

continually increased (as would be predicted) as the chamber pressure was

increased. These results indirectly support the contention that increasing

chamber pressure above about 60 psia increases the tendency for blowapart;

however, in that study it was not clear whether popping and/or RSS are

occurring. The full-scale injector results obtained on the OME study with

N204/MMH propellants show the same tendency; however, because inter-element

mixing occurs with this multi-element injector the overall loss in c* per-

formance is not as great (-3 percent).

In a separate study by Houseman (Ref. 19), it has been demonstrated that in

some cases increasing chamber pressure tends to result in a decrease in the

pop rate. Clayton (Ref. 18) conducted most of his tests at 100-psia chamber

pressure although he did conduct one test at 300 psia. Clayton contends that

for this specific case the higher chamber pressure decreased popping. The

effect of chamber pressure on popping is discussed in more detail in a later

section.
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Figure 13. Effect of Chamber Pressure on c* Performance Under
RSS Conditions (Ref. 17)
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Orifice Size

Zung (Ref. 8) contends that the orifice size affects cyclic blowapart,

,independently of contact time. Data published in Ref. 8 shows that for

a given chamber pressure a minimum orifice size exists below which no

popping will occur. Increasing orifice size beyond this value will result

in operating in the popping regime. (His data are presented for constant

contact times.) Lee and Houseman (Ref. 16) have shown that the value of

contact time producing zero pop rate is dependent on the orifice size, de-

creasing with decreasing orifice size.

Propellant Temperature

Photographic studies by Zung (Ref. 8) and Nurick (Ref. 13) have conclusively

demonstrated that if the injected propellants are at or near their boiling

temperature, then RSS will occur. The liquid jets in fact will not even

contact each other but will veer away from each other before the impingement

point is reached (in a manner similar to that shown in Fig. 9). Also, Clayton

(Ref. 18) has shown experimentally, that for N204/A-50 operating at a chamber

pressure of 100 psia, popping is sensitive to propellant inlet temperature.

Interestingly, he found that-for fixed injection conditions, raising the

temperature should first increase the popping rate until a maximum is reached

and then further increases in temperature will result in a decrease in pop rate.

A propellant temperature effect on c* performance has also been observed. The

most recent example is the Rocketdyne OME study (Ref. 21) where the fuel tem-

perature was increased from 70 to 200 F and c* performance decreased slightly.

This loss is thought to be related to increased reaction rates as well as the

fact that there is less sensible heat rise required to achieve propellant

boiling (pressure was constant). In other investigations, fuel temperature

has also been shown to result in a decrease in c* efficiency. During the

Rocketdyne research and development program (Ref. 20) subscale OME unlike-

doublet and triplet elements were evaluated over a wide range in MMH fuel

temperature, 55 to 220 F. The injectors incorporated from three to five

elements. A summary of the results is presented in'Fig. 14. Note that

over the range in fuel temperature from 50 to 220 F a decrease of about 10

percent in c* efficiency occurred. High-speed instrumentation also showed

that the combustion was very rough,suggesting that popping was occurring. In

all probability at the higher propellant temperatures RSS was also occurring.
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Figure 14. Effect of Fuel Temperature on c* Performance for Differ-
ing Unlike Impinging Elements (Ref. 21)



-28-

CHEMICAL REACTION STUDIES

Heat Release Rate

The relative importance of liquid phase reactions to blowapart mechanisms

can be related to the extent and rate of the accompanying heat release.

The maximum rates for this release was determined under forced-mixing

conditions for the HNO3/N2H4 and HNO3/UDMH combinations by Somogyi and

Feiler (Ref. 2) and for the N204/N2H4 combination by Lawyer and Tkachenko

(Ref. 5) in similar constant volume calorimeters. Mixing was accomplished

by the impingement of two directly opposed jets at the top of a small mix-

ing cup. The reacting liquids are in turn forced into a water quench pool

at the bottom of the cup. Heat release and gaseous product evolution

(assumed limited to the cup) was determined by measurement of quench pool

temperature and pressure rise. An alternate approach was used by Breen and

co-workers at Dynamic Science (Ref. 22) to determine the rate of N204/N2H4
liquid phase reaction. They diluted the hypergolic reactants in the inert

solvents, chloroform and benzene, and measured the reduced reactive rates in

a tangential mixing device. The maximum heating rates measured in these

experiments are compared in Table 1 to the previously-mentioned measurements

Table 1. Maximum Heat Release Rates for HNO /Amine
and N 0 /Amine Liquid Phase Reacti ns Under
Jet M~x~ng Conditions

Reference Reactant Mixing Heat Release
Combination (kcal/mol oxidizer/sec)

2 HNO 3/N2H4  A 8.3 x 104

2 HNO 3/UDMH A 4.8 x 104

5 N204/N2H4  A 6.5 x 104

22 N204/N2H4  B 4 x 10 4

6 N204/N2H4  C 4 x 10

A - Mixed jet stream confined by cup

B - Diluted tangentially mixed streams

C - Mixed jet stream unconfined
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with N204/N2H4 by Rodriguez and Axworthy (see p 15 ) in which the mixing

was accomplished by impingement of unconfined jets at an angle of 600

In general, all the data represent approximately the same order of chemi-

cal reaction rate. Of interest is the fact that Somogyi and Feiler (Ref. 2)

concluded that the reaction was mixing limited and that the heating rate

should be expressed in the form

Q = k F(M)e - E/RT (19)

where F(M) is the fraction of the propellants that is mixed. They also

hypothesize that the reaction and mixing occur at the interfacial surfaces

between fuel and oxidizer and are related to the interfacial area. Under

these circumstances, it may be more reasonable to assume a zero order

reaction rather than the first order reaction assumed by Lawyer in the

development of his ignition delay model (see p 8).

By use of jet mixing devices similar to those described above and noting

the delay between initial liquid contact and initial pressure rise,

Kilpatrick and Baker (Ref. 23) and Bernard and Dufour (Ref. 24) measured

ignition delay times of 3.1 and 7-12 milliseconds for the HNO 3/N2H4 com-

bination. The difference in results maybe due to differences in impinge-

ment techniques. The short time was measured with directly opposed jets

while the longer delay time was measured with a triplet injector element.

Gas and Condensed Phase Reaction Products

Sawyer (Ref. 25, 26) and Lawyer (Ref. 27, 28) have investigated the reac-

tions of N204/N2H4 in either the gas phase or as the combustion of liquid

hydrazine in N204 vapor. Their data generally agree with a two-flame

front combustion model in which hydrazine decomposition is the primary

reaction in a fuel-rich zone and oxidation of hydrazine decomposition

products by NO2 is the principal reaction in the second zone. The prod-

ucts of these reactions are also gases, H20 and N2 together with either
H2 or 02 in the oxidation zone (depending on mixture ratio), and NH3 and
H2 in the hydrazine decomposition zone. The products of condensed phase
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reactions are more complex and, because of their low stability, are also

difficult to isolate at ambient temperatures. Researchers at the U. S.

Bureau of Mines (Ref. 15, 29) mixed frozen N204 granules with frozen

N2H4, MMH, UDMH and Aerozine-50 at LN2 temperatures. When these mixtures

were allowed to warm up to -1300C, the various amine nitrates could be

detected by IR spectroscopy. When the solid mixtures were further warmed

to approximately -550 to -600C, they underwent violent exothermic reactions

including detonations. TNT equivalents of approximately 160% were deter-

mined for mixtures of N204 with the various amine fuels. Saad, et al,

(Ref. 30) reacted N204 with N2H4, MMH and UDMH in a chilled (-200C) inert

diluent, carbon tetrachloride. Infrared spectrographic analysis indicated

a complex product mixture including hydrazinium nitrate and the substituted

amine analogs RN-NH2 HNO 3, together with the various nitrosamines, RNHNO.

Formation of a cloudy precipitate (probably hydrazinium nitrate) in liquid

hydrazine drops burning in gaseous N204 was also observed by Lawyer (Ref. 27).

Hydrazinium nitrate salts were also identified in the residue of a dilute

vapor phase reaction of N204/HNO 3 (Ref. 31) and have been prepared in models

of rocket thrust chambers under near vacuum ignition conditions (Ref. 15).

Seamans, et al, (Ref. 32) have also shown that N204 and MMH can react in the

vapor phase to give MMH nitrate in good yields if the pressure is sufficiently

low to prevent ignition.

In summary, the formation of condensed phase products (principally the

RN-NH2 HNO 3 salts) has been established in a sufficient variety of con-

densed and gas phase reactions to justify inclusion in a model of impinge-

ment point chemistry. Because of the unstable nature and high energy of

these compounds (Ref. 15), formation and subsequent detonation of nitrate

intermediates becomes a plausible popping mechanism.
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DEVELOPMENT OF IMPROVED 
MODELS

The foregoing discussion indicates 
that the existing experimental 

data

are at best limited and in some cases appear 
to be inconsistent. The

apparent inconsistencies are probablY the result of 
a lack of under-

apparent inconsistencies are o that seemingly minor differences

standing of the governing mechanisms 
so thanot minor in terms of their effect

in operating conditions or geometry 
are not minor in terms of their effect

on blowapart. It is also apparent from the data that 
clear limits have

not been established 
defining mixing, RSS 

and/or popping regimes. 
Lastly,

there has not been a clear establishment 
of cause and effect (i.e., lowered

performance being the 
result of RSS or cyclic 

blowapart) between the 
per-

formance studies 
and the photographic 

studies so that rational 
limits can

be defined. Review of the above described 
models andexperimental 

data

suggest the more comprehensive 
models discussed below.

APPLICATION OF DATA 
TO MECHANISMS THAT 

CAN CONTROL POPPING

Mixing L imite Induction Time
As is the case with any hysical mixing process, time is required to accom-

plish liquid propellant mixing at an 
injector element impingement point.

As a consequences it is possible that 
this mixing time could be the limiting

Sa co mpingemen t disturbanceces. If this were the case, the 
pop rate for

factor for impingement d sturban cesequivalent 
operating conditions. To in-

Spropellants would be smiar a ~made of the overall popping

vestigate this possibility, a comparison 
was a zine50 th RFNA/UDMH

rates measured in Ref. 13 
with the N204/N2H4

' N204/Aerozine-50 and RFNA/UDMH

propellant combinations. These data are presented in Fig. 15 
together with

the N204/N2H4 data 
of Lee and Houseman 

(Ref. 16). Comparison is made 
on the

basis of the familiar contact time 
parameter. Figure 15 shows that no signi-

bficant difference exists aon t he rates obtained with the various propellants.

ficant difference exists among the 
te regardless of propellant reacti-

Because all the combinations 
had the same rate regardless 

of propellant reacti-

vity, it is therefore 
possible that the induction 

time required for the 
ini-

tiation of the disturbance 
could be limited 

by mixing time. 
(Although similar

popping rates were 
observed, it should 

be noted that the 
amplitudes of the
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detonations varied considerably among the propellants. With N204/N2H4,

popping was primarily of the powerful Class A level. With the other

propellants, Class B and C pops also occurred.)

For two impinging jets, the maximum available mixing time is dependent

on the sheet length and velocity. The sheet length has been determined

for equal diameter jets and the previously defined expression for the

maximum possible time for reaction to occur is:

tlig = L/V = K d/V2  (12)

where

K = 200 ft/sec

The data of Houseman (Ref. 16) were used to determine independently the

value of tlig corresponding to the induction time for the above operating

conditions and to verify that popping will not occur if the "contact" length

of the sheet results in insufficient stay time to produce "ignition" within

the sheet. This occurs if:

tlig < tind ; no popping (19)

tlig > tind ; popping will occur

Calculated ligament times for Houseman's data are plotted in Fig. 16 versus

the popping interval (i.e., the inverse of the pop-rate). The results show

that the pop-rate approaches zero as:

d/V2 + 0.8 psec 2/ft

Using Eq. (12), the resulting threshold ligament time is:

tig = 0.8 x 10-6 (200) = 160 Psec
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This induction time criterion applies at atmospheric pressure and a 400F

injection temperature for unlike doublets designed to provide optimum cold

flow mixing characteristics.

The reality of the above induction time requirement is indicated by the

results of separate experiments made with N204/N2H4 in the Rocketdyne

study of Ref. 13. In that study, high speed streak movies were taken of

the flow from the impingement point to a location approximately 3-inches

downstream which recorded the location of a disturbance. The film was

oriented as shown in Fig. 17. The average film speed was 4200 frames/sec

while the liquid sheet velocity was 50 ft/sec. A pressure of 13.7 psia,

propellant injection temperatures of 40oF together with a mixture ratio that

gives maximum cold flow mixing efficiency made the experimental conditions

equivalent to those of Fig. 15.

FUEO 3 INCHES

C3 FIELD OF VIEW 0 -- AREA OF VIEW

TIMING MARKS
E 1000 CYCLES/SECOND

OXIDIZER

TIME INCREASING

Figure 17. Orientation of Film with
Respect to Injector Fan
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An enlarged photograph of a typical disturbance pattern is shown in Fig. 18.

Note that the high-velocity luminous disturbance fronts appear in pairs,

noted in the figure as "initial" and "secondary" disturbances. (The initial

and secondary waves are separated in time by about 0.2 millisecond.)

Reduction of the time/distance characteristics recorded on this photograph

shows that the initial disturbance originates just slightly downstream of the

impingement point. The location of initial disturbance is determined by the

minimum slope shown in the photograph. There is a minimum because the dis-

turbance is traveling both upstream and downstream at the point of initiation.

This origin of the initial disturbance is about 0.1 inch downstream of the jet

impingement point. The wave speed of the disturbance was calculated to be

5150/sec indicating that the disturbance was an explosive deflagration wave.

Based on the location of the disturbance, the liquid sheet velocity, the in-

duction time is:

0.1tind = 50) = 166 psec

The correlation between this experimental induction time (166 psec) and the

ligament time resulting in zero pop-rate (160 psec) clearly supports the

hypothesis that popping occurs when sufficient contact time is available

for mixing-induced ignition and can be prevented by proper injector geometric

and hydraulic design. That is, once the induction times for a given propel-

lant combination are determined over the particular range of operating condi-

tions (i.e., Pc, To,f d), then injector design criteria for avoidance of

popping can be defined quantitatively.

Role of Nitrate Intermediates

The verified presence of unstable nitrate intermediate compounds in the

combustion of N204/Amine propellants (Ref. 15, 29, 30) makes them suspect

as the prime cause of popping. The detonation of nitrates may be produced

by either impact shock or by thermal ignition. If the detonations are caused

by ignition explosions of the nitrate intermediates, then the induction time

alone would control popping. If, however, the detonations are initiated by

impact, then the popping limits would be controlled by both an induction time

and an impact force.
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Figure 18. Section of Streak Photograph Showing Disturbances
and Description of Events
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If the explosions are triggered by thermal ignition, they might be expected

to have many of the classical detonation characteristics including the pres-

sure-temperature explosion limit curve representing the competition 
between

the reactions which form and remove intermediate species.(Ref. 33, 34).

These characteristics are represented qualitatively in Fig. 19. Pressure

and induction time are shown in this graph rather than the usual P-T 
relation.

Such a transformation of variables is possible because the induction time

represents a heat-up period as well as a mixing period; consequently the

induction time represents a AT above a fixed inlet propellant temperature.

Of particular interest is that these characteristics suggest that increasing

chamber pressure could either increase or decrease pop rate depending on the

P range covered. From the data of Houseman, where chamber pressure was varied,

several values of induction time for different pressures could be determined.

The results are presented in Fig. 20. Note that these results could be inter-

preted as corresponding to the second, third, and fourth legs 
of the theoretical

induction time characteristics as schematically shown above.*

These results suggest that, over the range in Pc studied, increasing Pc should

initially result in a decrease in the pop rate (increasing induction time).

Then with further increases in P the pop rate should increase up to a chamber

pressure of about 150 psia. Increasing Pc beyond this point should again

result in decreasing the pop rate. Zung (Ref. 8 ) reports popping frequency

as a function of chamber pressure in the 100 to 200 psia range. His data show

that the popping is a maximum (~45 pops/sec) around 100 psia and drops rapidly

to about 8 pops/sec at 200 psia.

The above result is particularly interesting when considered in terms of c*

efficiency characteristics with chamber pressure. If the maximum pop rate

produced minimum time averaged c* performance, then based on the above described

*One possible reaction contributing to Region 2 of Fig. 19 is the highly

exothermic and pressure dependent recombination 2 NO2  N,04 which might
be expected at the impingement point of an injection elemeht.



-39-

c

O O2
z

I-

TpROPELLANTS " CONSTANT

AMBIENT PRESSURE, Pc

Figure 19. Theoretical Induction Time as a Function
of Ambient Pressure for Ignition Explosions

e-

W 3

2 4

z

10 C

6 6

' P - 14.2 PSIA
C

4 T- 40 F

> J. HOUSEMAN'S
2 DATA (REFERENCE -

16)

0 100 200 300
PRESSURE, PSIA

Figure 20. Comparison of the Data of Reference 16 with the
Theoretical Prediction of Induction Time



-40-

characteristics, the maximum performance should occur at about 60 to

70 psia, and minimum performance at about 100 psia. Inspection of

Fig. 13, presented previously, shows these identical trends in c*

efficiency with increasing chamber pressure. This result suggests

that the detonations are ignition initiated. It is believed that the

detonations result from rapid liquid-phase combustion of nitrate inter-

mediates which are formed in liquid-phase reactions but are not found

in gas-phase reactions between propellant vapors. Consequently, if the

nitrate intermediates are going to enter into a detonation then they

require (1) liquid/liquid contact, and (2) sufficient time for the

liquid phase reactions to occur. A third requirement supported by the

mixing limited induction time results is that sufficient mixed volume

must exist to support a detonation. In addition, studies at Atlantic

Research Corporation (Ref. 35) have shown that agitation and forced

intimacy of the oxidizer with the fuel is also necessary for detonation.

Their study has experimentally shown that when N204 and Hz are brought

into contact without forced mixing (i.e., touching of the interfaces),

then no detonation will occur, although violent vapor evolution does

result causing separation of the liquids. However, when turbulent mix-

ing of the propellants is forced, and delay times are sufficient to

obtain liquid-phase reactions, then an explosion will occur, depending

on whether a mixed region of adequate size is achieved. This latter

requirement suggests that spontaneous spray detonations should not be

possible since liquid-phase reactions do not occur in the mixed spray,

where droplets are decomposing due to droplet heatup and vaporization.

However, in a rocket engine, the mixed sprays can of course amplify a

detonation and sustain an instability. In addition, for unlike-impinging

elements, the mixing is dependent on the element design and operating

conditions so that the pop rate should be maximized when optimum mixing

occurs. This conclusion is supported by the results presented in Fig. 10,

which shows minimum performance at the optimum mixing design condition.
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The above described data suggests that popping is controlled by:

1. Forced mixing and agitation

2. Sheet length which must provide sufficient time:

a. To achieve an adequate volume of mixed propellant

b. For liquid phase reactions to occur

3. The tendency of propellants to produce unstable condensed

phase intermediate products (ordinarily nitrates) whose

formation and decomposition rates are temperature and

pressure dependent.

Based on the above discussion, no single model is likely to completely

describe popping limits. This possibly explains the inability of past

investigators to extrapolate their findings to other operating conditions

and the apparent inconsistency of results from differing studies. An

example of a consistent set of models describing popping limits 
is shown

in Fig. 21. First consider the orifice size limits below which insuffi-

cient mixed volume exists to support a detonation (Fig. 21a). The minimum

orifice limits-should be a function of chamber pressure and temperature

as those parameters are related to reactivity and induction time. The

various curves are determined by varying both orifice size and contact

time until an orifice size is obtained which will not pop regardless of

contact time. The limits are described for a given pressure and propellant

temperature. A designer could simply enter this curve to determine the

maximum allowable orifice to ensure that popping will not occur. However,

based on injector face diameter and orifice size limitations the maximum

allowable orifice size as specified above may be unacceptable. In that

case, the designer would then enter Fig. 21b, which gives the induction

time limits for the specific engine operating conditions. Induction time

is then related to injector design parameters by:

tind < K dj/Vj 2 for no popping

The constant K has an assigned value of 200 for equal diameter unlike doublets.

Differing values may be appropriate for doublets with differing orifice diam-

eters or for other types of injector elements.



-42-

w

z
- RSS

P, PSIA

(a) Maximum Allowable Orifice Size Providing Insufficient
Mixed Volume for Detonation

U)
-.J
-J

LSi

NO POPPING

l (Rss)

T, F

(b) Induction Time for Detonation if Sufficient Volume Avail-
able for Detonation

Figure 21. Schematic of Popping Limits
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Injection AP and therefore injection velocity limits are generally bounded

by both feed system coupled instability (APmin) and system requirements

(APmax). Based on these values the range in orifice size consistent with

overall design conditions which will not produce popping can be determined.

If this value is consistent with orifice size fabrication, plugging, or other

limits then the designer may proceed to the RSS model to determine if the

injector can be designed to provide both popping and RSS free operation.

APPLICATION OF DATA TO MECHANISMS
THAT CAN CONTROL RSS

A corollary to the above discussion could be interpreted to state that

reactive stream separation will occur when sufficient contact time is

available for gas-phase reactions but when the mixed volume is insufficient

to support a detonation. This suggests that a minimum orifice size probably

exists where the mixed volume will always be insufficient for popping but

could produce RSS. In this regard, it should be noted that under conditions

when the contact time is insufficient for popping (i.e., not enough time for

liquid-phase reactions) mixing would be expected to occur since gas-phase

reactions should require greater times. However, if the heat transfer to

the propellants before impingement is sufficient to cause some vaporization,

gas-phase reactions would produce RSS, thereby inhibiting liquid/liquid con-

tact. This result requires propellant jets that are initially popping or

mixing to eventually operate in the RSS region as the propellant temperatures

are increased unless the free jet length before impingement is reduced.

Since the saturation temperature is dependent on pressure then Pc should also

have an effect where RSS occurs.

A schematic illustrating RSS limits is shown in Fig. 22. For ease in in-

terpretation, this schematic is presented for a single propellant tempera-

ture and orifice diameter. It is important to note that even if the design

will be pop-free, the injector could still operate in the RSS region. If

the orifice diameter, dl, was selected based on minimum mixed volume for a

detonation then the injection velocity must be sufficient to insure operation
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Figure 22. Schematic of Reactive Stream Separation



-45-

in zone 1 rather than zone 3. If a larger diameter d3 is chosen, then

the injection velocity must be chosen to prevent operation in either

zone 2 or 3. As shown in Fig. 22, there is little that can be done in

terms of element orifice diameter or injection velocity to prevent

separation by the flashing mechanism in zone 4.
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NOMENCLATURE

a speed of sound

A frequency factor

B empirical exponential reaction coefficient

C concentration

Cp specific heat

d diameter

1J detonation parameter

E activation energy

F(M) fraction mixed

gc conversion factor

AH enthalpy change

J conversion factor

k modified frequency factor

L length

n number of moles

p,P pressure

Q heat release rate

r reaction rate

S injector element spacing

t time

T temperature

V velocity

w weight flow rate

X constant relating mixing length to jet diameter

Y lumped reaction constant
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y impingement angle

6 gas film thickness

n mixing efficiency

e explosion energy

p density

T delay time

Subscripts

b boiling

f,F fuel

g gas

ind induction

ign ignition

inj injection

j jet

L loss

lig ligament

mix mixing

o initial

ox oxidizer

R reaction

v vaporization
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